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General and efficient synthesis of b-lactams bearing a quinone
moiety at N1, C3 or C4 positions
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Abstract—A general and efficient synthesis of cis- and trans-b-lactams bearing a quinone moiety at N1, C3 or C4 positions has
been developed in a racemic form. In some cases this methodology offers the possibility of achieving the 2-azetidinone-quinone
in an optically pure form. © 2001 Elsevier Science Ltd. All rights reserved.

The development of new synthetic methods for the
efficient construction of biologically active compounds
is an important field in organic chemistry. In this
context, natural products are of particular interest as
leading structures. However, the isolation of new natu-
ral products is rather difficult and time consuming.
Therefore, the concept of synthesizing natural product
hybrids and analogues, containing two different phar-
macophoric subunits, has been recently devised.1

Similarly, the synthesis of b-lactams and their biological
application is an increasingly active area. The develop-
ment of efficient approaches to the stereocontrolled
synthesis of b-lactams continues to be of crucial impor-
tance within the context of the most widely employed
class of antimicrobial agents to date.2 Besides, the
ever-growing new applications of azetidine-2-ones in
the enzyme inhibition field justify a renewed interest in
these compounds.3 On the other hand, quinones are a
large group of naturally occurring products that display
a broad range of biological properties such as antiviral,
antifungal and antitumor effects as well as enzymein-
hibitory activity.4 Although many investigations have
been made in these fields into various types of b-lac-
tams and quinones separately, no information is avail-
able regarding the synthesis of compounds involving
the coupled-2-azetidinone/quinone system. Continuing
with our work on the synthesis and synthetic applica-
tions of chiral, functionalized 2-azetidinones,5 we wish
to report a general and efficient synthesis of different
types of cis- and trans-b-lactams bearing a quinone
moiety at N1, C3 or C4 positions, which can be
regarded as hybrids of the pharmacologically relevant
subunits of b-lactam and quinone.

The starting substrates, 2,5-dimethoxyphenyl substi-
tuted b-lactams 1, were prepared both in racemic and
optically pure forms using standard methodology.
Racemic compounds 1a–f were obtained as single cis-
diastereoisomers from the appropriate imine, through
Staudinger reaction with the corresponding acid chlo-
ride in the presence of Et3N (Table 1, entries 1–6).6

Enantiomerically pure 2-azetidinones (+)-1g,h were
obtained from the acid/Cl2P(O)OPh/Et3N modification
of the Staudinger reaction,7 using the Evans–Sjögren
chiral auxiliary (S)-4-phenyl-2-oxooxazolidin-3-yl acetic
acid (Table 1, entries 7 and 8).8 The assignment of a
(3S,4R)-stereochemistry for the 2-azetidinones derived
from Evans–Sjögren ketenes is based on the current
model for asymmetric induction in the Staudinger reac-
tion.9 However, compounds 1i–k were obtained as sin-
gle trans-diastereoisomers using the ketene–imine [2+2]
cycloaddition (Table 1, entries 9–11).

The aim of the present study is to achieve the polyfunc-
tionalized system of quinone b-lactam. The target
molecules 2 were prepared smoothly via oxidative
demethylation10 of the appropriate 2,5-dimethoxy-
phenyl substituted b-lactams 1 using ceric ammonium
nitrate (CAN) in aqueous acetonitrile. This strategy
allowed us to employ a large arsenal of commercially
available aldehydes, amines and acid chlorides. The
reaction was carried out at room temperature in a
mixture of CH3CN/H2O (3:1) and proceeded almost
instantaneously.11 The process was extremely sensitive
to the solvents ratio. In fact, the greater the amount of
water, the greater the complexity of the reaction mix-
tures. This transformation tolerates different substi-
tuents at the 2-azetidinone ring, such as alkyl, alkenyl,
alkynyl, heteroaryl, alkoxy, 2-oxooxazolidin-3-yl,* Corresponding author. E-mail: alcaideb@eucmax.sim.ucm.es
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and carboxymethyl moieties. Pure compounds 2a–j
were isolated in fair to excellent yields (44–98%) by
flash chromatography (Scheme 1).12

Importantly, the b-lactam ring stereochemistry was
unaffected by this process. The cis- or trans-stereo-
chemistry of the four-membered ring is set during the
cyclization step to form the 2-azetidinone ring, and it is
transferred unaltered during the further synthetic
steps.13 This methodology offers the possibility of
achieving 2-azetidinone-quinones 2 in racemic and opti-
cally pure forms.

Because quinones are among the best dienophiles
traditionally used in Diels–Alder reactions,14 we
decided to attempt the use of 2-azetidinone-quinones
2 as dienophiles. The cycloaddition took place
pyrolytically with 2,3-dimethyl-1,3-butadiene giving
rise to the adduct 3a, while the reaction with Dan-
ishefsky’s diene proceeded in the presence of a Lewis
acid (zinc iodide) affording cycloadduct 3b (Scheme
2).15 The facial selectivity of these cycloaddition reac-
tions may be controlled by the substituted b-
lactam ring at the dienophile in which one face of the
quinone is blocked; thus, the diene preferentially

Table 1. Synthesis of 2,5-dimethoxyphenyl b-lactams 1a–k via ketene–imine cycloadditiona

Yield (%)cR2 R3 X b-Lactam cis/trans ratiobEntry R1

CH3O Ar 2-Propenyl Cl 1a 100:0 991
1bCl2-Propynyl 100:0Ar2 CH3O 85

Ar Benzyl Cl 1c 87100:03 CH3O
Ar CH2CO2CH3 Cl 761d 100:04 CH3O

CH3COO Ar 2-Propynyl Cl 1e 100:05 90
1fClAr 100:02-Furyl6 CH3O 52

Ar 2-Propynyl OH (+)-1g 100:0 507 Ox
92100:0(+)-1hOH8 BenzylArOx

2-Furyl 2-Propynyl Cl 1i 0:100 509 Ar
3-Furyl 2-Propynyl Cl 1j 0:100 5410 Ar
3-Thienyl 472-Propynyl Cl 1k 0:10011 Ar

a Ar, 2,5-dimethoxyphenyl; Ox, (S)-4-phenyl-2-oxooxazolidin-3-yl.
b Determined by integration of well-resolved signals in the 1H NMR spectra of crude reaction mixtures prior to purification.
c Yield of pure, isolated product with correct analytical and spectral data.

Scheme 1.
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Scheme 2.

approaches the less hindered face in the transition
state.

In conclusion, to the best of our knowledge, this is
the first example of the preparation of hybrid prod-
ucts containing the pharmacologically relevant sub-
units of b-lactam and quinone. The extension of this
methodology to the preparation of novel, differently
substituted polycyclic b-lactams is currently under
investigation in our laboratories.
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